Algorithms

If you would like to contribute your own algorithm to pyCGM2, please submit it via the contact page. We welcome community contributions to expand the library.

Gap filling

  • Gløersen, Øyvind; Federolf, Peter (2016) Predicting Missing Marker Trajectories in Human Motion Data Using Marker Intercorrelations. In : PloS one, vol. 11, n° 3, e0152616. DOI: 10.1371/journal.pone.0152616.

  • Burke, M.; Lasenby, J. (2016) Estimating missing marker positions using low dimensional Kalman smoothing. In : Journal of biomechanics, vol. 49, n° 9, p. 1854–1858. DOI: 10.1016/j.jbiomech.2016.04.016.

Code contribution, we thank Mickael Burke for sharing scripts.

Find out more aboout the theory of this algorithm

Gait event methods

  • Zeni, J.A., Richards, J.G., Higginson, J.S., 2008. Two simple methods for determining gait events during treadmill and overground walking using kinematic data 27, 710–714. https://doi.org/10.1016/j.gaitpost.2007.07.007

  • O’Connor, Ciara M.; Thorpe, Susannah K.; O’Malley, Mark J.; Vaughan, Christopher L. (2007) Automatic detection of gait events using kinematic data. In : Gait & posture, vol. 25, n° 3, p. 469–474. DOI: 10.1016/j.gaitpost.2006.05.016.

  • Dumphart, Bernhard; Slijepcevic, Djordje; Zeppelzauer, Matthias; Kranzl, Andreas; Unglaube, Fabian; Baca, Arnold; Horsak, Brian (2023) Robust deep learning-based gait event detection across various pathologies. In : PloS one, vol. 18, n° 8, e0288555. DOI: 10.1371/journal.pone.0288555.